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ABSTRACT Models of the mammalian clock have traditionally been based around two feedback loops—the self-repression of
Per/Cry by interfering with activation by BMAL/CLOCK, and the repression of Bmal/Clock by the REV-ERB proteins. Recent
experimental evidence suggests that the D-box, a transcription factor binding site associated with daytime expression, plays
a larger role in clock function than has previously been understood. We present a simplified clock model that highlights the
role of the D-box and illustrate an approach for finding maximum-entropy ensembles of model parameters, given experimentally
imposed constraints. Parameter variability can be mitigated using prior probability distributions derived from genome-wide
studies of cellular kinetics. Our model reproduces predictions concerning the dual regulation of Cry1 by the D-box and Rev-
ErbA/ROR response element (RRE) promoter elements and allows for ensemble-based predictions of phase response curves
(PRCs). Nonphotic signals such as Neuropeptide Y (NPY) may act by promoting Cry1 expression, whereas photic signals likely
act by stimulating expression from the E/E’ box. Ensemble generation with parameter probability restraints reveals more about a

model’s behavior than a single optimal parameter set.

INTRODUCTION

Systems biology aims to develop predictive mathematical
models of cellular phenomena. Models can be abstracted
into two components—the model structure, which describes
the relationship between modeled quantities and specifies
rules for the dynamic updating of these quantities, and the
model parameters, which contain problem-specific quantita-
tive information. Although the model structure is often pro-
posed based on expert knowledge of the components of a
system and their relationships, identification of model pa-
rameters requires quantitative data. Physical scientists prefer
models with few parameters, epitomized by von Neumann’s
famous jibe about fitting an elephant with four parameters
(1). Biology involves complex, heterogeneous systems—
the components of a cell are far more diverse than are the
constituents of a crystal or an atomic nucleus—and quantita-
tive parameter identification is unavoidable.

In what has been termed sloppy behavior (2-4), a model’s
output is strongly affected by certain linear combinations of
parameters, whereas other combinations have little impact.
When a sloppy model is tuned to agree with system-level
data, the uncertainties for the estimates of individual param-
eters are often disturbingly large. It is only when parameters
are viewed in a systemic context that the experimental data
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show their true (albeit limited) ability to constrain the
model.

Given an estimated set of parameters, uncertainty quan-
tification typically involves the calculation of confidence
intervals—finite ranges within which the true parameter
values can be localized to within a certain probability. In
many cases, the confidence interval is infinite and parame-
ters are said to be nonidentifiable. It is often useful to distin-
guish between practical nonidentifiabilities that result from
insufficient or noisy data and structural nonidentifiabilities
that arise when there is an insufficient mapping of model
states to observables (5).

Confidence intervals can be estimated using the Fisher In-
formation Matrix, which requires linearization about the
optimized solution (6). When dealing with highly nonlinear
models, it is often preferable to use a bootstrap method, in
which parameters are repeatedly reestimated with new
experimental data to generate an ensemble of parameter
sets (7). Because new data are not always readily available,
simulated data can be generated by Monte Carlo techniques,
if the variance of the experimental data can be estimated.
Bootstrap methods are difficult to apply to models with
complex dynamics such as oscillations because parameters
often cannot be efficiently reestimated (8). Bootstrap
methods allow the estimation of confidence intervals not
only for parameters, but also for systems-level outputs of
the model.
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In this study, we use Metropolis Monte Carlo (MMC)
sampling (9) to achieve the same goals as bootstrap
methods, without the need for repeated reoptimization.
The objective function for model optimization was used as
an energy function and a maximum-entropy ensemble of pa-
rameters with a noise scale similar to the experimental data
was generated. This allows us to set bounds on our param-
eter estimates and model predictions, and determine which
of those predictions are robust to changes in the parameter
values that are within the experimental noise.

Circadian clocks have long been a fruitful system for
mathematical modeling, and the mammalian clock in par-
ticular has been the subject of numerous modeling studies
(10-14). Most mammalian clock models have focused on
two feedback loops. In the first, a CLOCK/BMALI hetero-
dimer binds to the E-box region upstream from the Per and
Cry genes, activating their transcription. A PER/CRY heter-
odimer binds to the CLOCK/BMALI1 complex, abolishing
its activity and indirectly repressing the expression of Per
and Cry. In the second loop, the transcription of Clock
and Bmall are repressed by the binding of REV-ERBa
to an RRE region in their promoters, whereas RevErba
is controlled by an E-box (and therefore by CLOCK/
BMAL1 and PER/CRY). Some researchers (12) have
referred to this as a positive feedback loop, emphasizing
that Bmall and Clock indirectly activate their own transcrip-
tion by activating Per and Cry, which repress RevErba and
therefore derepress the RRE-controlled Clock and Bmall
genes. Others (11) have modeled Bmall as self-inhibitory
because BMALI is also a direct activator of RevErba.
RevErba™'~ knockout mice show only a modest circadian
phenotype, and most modeling studies assume that the
loop involving RevErba serves only a stabilizing or regula-
tory role and that oscillations should persist in its absence.
Recently, RevErba/B double knockout mice have been
used to show that the (partially redundant) RevErb genes
are essential; double-knockout mice show phenotypes
similar to knockouts of core clock genes such as Per and
Bmall (15).

Recently, a different organizational scheme has been pro-
posed (Fig. 1 A) (16-18). This approach focuses on three
clock-controlled elements (CCE), transcription factor (TF)
binding sites that give their target gene a circadian expres-
sion schedule. These three are the E/E’-box, which governs
morning expression (19-22); the D-box, which promotes
daytime expression (21,23); and the RRE, which leads to
evening expression (21,24-26).

When an exogenous luciferase reporter is competitively
regulated by an E/E’-box-driven promoter and an RRE-
driven repressor, the result is a daytime expression phase
similar to that obtained when the reporter is driven by a
D-box. In other words, combining morning activation and
nighttime repression generates a D-box. Similarly, a night-
time phase characteristic of RRE expression can be obtained
by combining a daytime promoter and a morning repressor
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FIGURE 1 (A) The core clockwork involves transcriptional activators
(green), repressors (magenta), and protein kinases (yellow). Transcriptional
regulation involves three clock-controlled elements: the E/E’-box, the
D-box, and the RRE. Gray lines indicate that a transcription factor (TF)
is regulated by a particular CCE, magenta or green lines indicate the
CCE to which a given TF binds. Dotted lines denote computationally in-
ferred relationships. (B) Simplified version, motivated by synthetic-biology
experiments. (C) Realization of the simplified clock architecture using two
activators and three repressors. Numbered boxes show regulatory interac-
tions, color-coded by CCE. To see this figure in color, go online.

(17). Cryl contains an E/E’-box and D-boxes in its pro-
moter, as well as an RRE in an intron (18). When exogenous
Cryl was driven by an engineered promoter in cultured
Cryl ™' ~:Cry2~'~ cells, a combination of D-box and RRE
elements recapitulated the wild-type behavior, whereas
the (widely assumed) E/E’-box/RRE combination led to
aberrant circadian rthythms. CRY1 is an E/E’-box repressor
with an evening expression phase; reconstructing the E/E’-
box expression using D-box and RRE elements completes
the simplified network shown in Fig. | B and C.

This topology differs from the canonical clock structure
in several ways. Instead of a deconstructive approach in
which system components are identified and their interac-
tions characterized, it is informed by a synthetic approach
in which interactions are added until the desired system
behavior can be replicated. As a rule, clock modeling
studies have neglected the D-box. Although the essentiality
of the D-box is still unclear (27), its role in Cryl regulation
argues for its importance.

Our study should be placed in the context of previous
clock models (10-14). The clearest difference is our inclu-
sion of genes regulated by the D-box; previous studies
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have focused primarily on the Per, Cry, Bmal, and RevErb
genes, with the possible inclusion of Clock (11,13,14),
Rory (13), Npas (14), and various circadian kinases (14).
The model by Mirsky et al. uses Rory to capture the effects
of all of the Ror activators; this accounts for the combinato-
rial regulation of Rory by the E/E’-box and the RRE, but
not the regulation of Rora and Ror( by the D-box (21).
Although recent experiments suggest dual regulation of
Cryl by RRE and D-box elements, previous models have
described Cryl as regulated either by an E-box alone
(11,12) or by an E-box together with an RRE (10,13,14).
Although the precise role of the D-box is likely to remain
controversial, inclusion in modeling studies should be a
part of future assessments of its function.

Another important difference is in computational meth-
odology. Early modeling studies (10-12) used manual,
trial-and-error parameter searches. Later studies used
global search strategies such as evolutionary optimization
(13) or simulated annealing (14); our work follows this
more recent trend by using differential evolution (28) for
optimization. Previous studies assessed the model’s robust-
ness primarily by modifying individual parameters; our
method provides a more comprehensive picture of param-
eter variability by using MMC sampling, and is somewhat
in the spirit of clock modeling studies that have used boot-
strap sampling (8).

Finally, previous clock models have been validated pri-
marily based on their ability to predict knockout mutants,
including some subtle and counterintuitive effects. Doing
this successfully often requires the inclusion of multiple iso-
forms of the Cry, Per, and Bmal genes, to capture their par-
tial functional redundancy (13,14). Our study has focused
instead on a minimal model inspired by synthetic-biology
approaches; redundant isoforms are omitted and many of
the relevant knockouts have not yet been characterized.
Instead, we use our model to make predictions regarding
the phase response curves obtained by perturbations of
different genes, and outline how these phase response pre-
dictions might be experimentally accessible.

MATERIALS AND METHODS
Model equations

The gene regulatory network can be represented as a system of ordinary
differential equations (ODEs). The mRNA variables a to e and the protein
variables A to E correspond to circadian clock genes as listed in Table 1.

TABLE 1 Possible assignments of model genes to
mammalian clock genes

Model gene Mammalian clock gene(s)
a Dbp/TeflHIf

b Rora/

c Cryl

d Rev-Erbo/(3

e E4bp4
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Details of the model equation derivation can be found in the Supporting
Material. The dependent variables a to e and A to E are unitless; the abso-
lute concentration scales are arbitrary and we are only interested in relative
changes. The n parameters are unitless degradation rates of mRNAs and
proteins. The functions A(R) and g(A,R) are used to capture the effects of
gene regulation; both are bounded to the interval [0,1], with #(R) monoton-
ically decreasing (repression), and g(A,R) increasing in A but decreasing in
R (activation and repression on the same promoter). Binding follows the
Hill equation; activators and repressors bind competitively to the same pro-
moter as in the following:

1 _ (XiA)n
TRy AR = A T R

@

Here, the x;’s are dimensionless activation constants—low ¥; values corre-
spond either to weak binding or low-abundance TFs. To limit the number of
free parameters, the Hill coefficient n was assumed to be equal for all
reactions.

If all dimensionless degradation rates (the n’s in Eq. 1) are multiplied by
a factor vy, and all of the activation constants y are multiplied by 7,% then
the period will decrease by 1/v,, whereas the model output is otherwise
unchanged.

Hi(R) =

Knockout phenotype constraints

The circadian clock is rather resilient against gene knockouts (13,15,27),
especially at the organism level, but our simplified model lacks redundancy
and is more easily rendered arrhythmic. Rather than modifying Eq. 1, we
can obtain knockout effects by setting some of the y; variables to zero.
For example, a Dbp/Tef/HIf triple knockout could be approximated by
setting x» = x4 = 0; levels of the protein variable A will still be nonzero,
but it will not have any effect on the other variables. In reality, mice with
this triple mutation are rhythmic (albeit prone to epilepsy). The simulated
knockout is always arrhythmic, because b and ¢ are always zero in the
absence of A, and no closed feedback loops exist. Other knockout pheno-
types disturb clock function in ways that significantly constrain our model.
The Cryl1/2 (29) and Rev-Erba/( double knockouts (15) show complete ar-
rhythmicity. Fig. 1 C shows that the removal of Cryl disrupts all feedback
loops and makes oscillations impossible.

Removal of Rev-Erba/@ leaves some feedback loops intact, and param-
eter sets with xg = x10 = 0 are sometimes rhythmic. In another interesting
set of mutants, either the D-box or the RRE has been removed from Cryl
(18); removal of the RRE leads to arrhythmicity, whereas D-box removal
lengthens the oscillation period. Correct phenotypes for these mutations
are not guaranteed by the model topology.
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To ensure correct knockout phenotypes, our model was reintegrated three
times: once with x¢ = x10 = 0 (Rev-Erb knockout), once with x5 =x¢ =
0 (CrylARRE), and once with x4 = x7 = 0 (CrylAD-box). If any of these
did not produce the correct oscillation phenotype (arrhythmic, arrhythmic,
and long-period, respectively), the objective function (see below) was set to
~10* (the maximum double-precision floating point value), effectively
removing these parameter sets from consideration.

Parameter search

Initially, parameters were chosen randomly from the probability distribu-
tions described in Table S1 and Fig. S1 in the Supporting Material. The dis-
tribution of mRNA decay constants was derived from the data set of
Sharova et al. (30), who measured the decay rates of 1825 TF mRNAs in
a mouse cell culture. The rate distributions for mRNA transcription, as
well as protein translation and degradation, were drawn from Schwan-
hiusser et al. (31), who used parallel metabolic pulse labeling to estimate
these rates for more than 5000 genes in mammalian cells. The distribution
for TF-DNA binding constants was chosen to have significant density over
the range from 0.002 to 10 nM (32), but to have a density near zero for
values above 1000 nM, a region dominated by nonspecific binding (33).
The nondimensional parameters x and 7 above were obtained from these
distributions as described in the Supporting Material. The pairs (x1, Xg)s
(X2, X4)» (X3, X7)> (X5, X9), and (Xe, X10) Were constrained to be equal in
the initial search, because they describe the binding constants for a single
TF on similar promoters. For each randomly chosen parameter set, the
fixed point was identified using a multidimensional Newton search (6)
and the stability determined from the eigenvalues of the Jacobian
Ji (1) = 0fi(¢)/dy; at the fixed point (34).

In this initial search, ~ 1.86% of parameter sets showed limit-cycle oscil-
lations. When knockout constraints were included in the initial search, the
success rate decreased to 0.015%. Because the experimental parameter dis-
tributions were measured for a broad range of cellular genes, rather than spe-
cifically for oscillating transcription factors, one can expect to see some
systematic differences between the distribution used in the search and the
distribution of parameters in successful oscillators. Typical oscillation pe-
riods were around 200 h; parameters were rescaled as described above to
give 24-h periods. In general, this led to degradation rates that were faster
in the oscillating parameter sets than for cellular genes and proteins gener-
ally. To compensate for this difference, we calculated new parameter distri-
butions from the search results that were used in scoring (Fig. S1).

Estimating protein oscillation phases

Model genes were identified with real circadian genes (see Table 1) for
which qPCR data were available for mRNA abundances in the mouse
Suprachiasmatic nucleus (SCN) (21). The available protein data were far
less quantitative; published results (22,35-38) were available only for pro-
teins sampled from the mouse liver, typically at 4-h time intervals, and
(roughly) quantified by Western blotting. Our approach was to estimate
amplitudes from published data and use the amplitude data to derive other
features of the protein abundance curves.

Protein amplitudes were obtained either by calculating band densities
from published blot images using ImageJ (39), or (when band densities
were quantified in the original publication) converting published plots
into a data table format using Engauge (http://digitizer.sourceforge.net/).
For DBP and REV-ERBua, oscillations were so large that a reliable cosine
fit was impossible; these were assigned a conservative oscillation ampli-
tude of 0.8. The amplitudes obtained by curve fitting for CRY1 (= 0.521)
and E4BP4 (= 0.461) were usable. No oscillation amplitude could be
obtained for (ROR)a because, in contrast to the SCN, it does not oscil-
late in the mouse liver. A conservative value of 0.25 was assigned, equal
to the smallest oscillation amplitude found for any circadian protein
(CLOCK).
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To estimate physically reasonable mRNA-protein phase lags, an mRNA
m and a protein p were modeled using the following:

dm 1 27rt+1 5

a2\ m Gttt
J 3)
p
E = 6pm — ap

These equations can be solved analytically (see Supporting Material) to
obtain an asymptotic protein oscillation amplitude of

Q2

¢@+%ﬂ%+%)

The phase lag between the mRNA and protein oscillations is obtained using
the following:

“)

«, sin @ + wy cos
tan_l< p SN ¢ 0 ¢
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O

Note that both quantities depend only on the degradation rates «,, and «,,
and the driving frequency wo = 27/24. When values for «,, and «, were
drawn at random from the experimentally derived distributions in Table
S1, a roughly linear relationship was found between phase lag and protein
amplitude (Fig. S2). This allows us to estimate physically reasonable phase
lags based on protein amplitudes. For DBP, CRY1, REV-ERBa, and
E4BP4, the resulting phase lags were consistent with the available Western
blot data. The higher-amplitude proteins (DBP and REV-ERBa) were as-
signed the shortest delays (1.7 h) whereas E4ABP4 was given a longer delay
(3.4 h). For protein RORa, Western blot data was unavailable and the phase
lag was set to 4.5 h, consistent with the relatively low amplitude assumed
above. These phase lags were then added to the (more accurate) mRNA
phases to obtain the target phases depicted in Fig. S3.

Definition of the objective function

Parameter sets were scored by integrating the dynamical equations until they
converged to a limit cycle, then measuring the total squared deviation between
the experimentally derived data points and the model abundances (Figs. 2,
Fig. S4). For the protein components, cosine curves were calculated using
the amplitudes and phases described above, with the same sampling density
(12 points over 48 h) as the qPCR data. The published qPCR data (and the
estimated protein data) had been normalized to have a mean of 1.0. Because
the model equations are nondimensional, the absolute oscillation baseline is
arbitrary and model outputs were similarly normalized before comparison.
The score function should be insensitive to initial conditions, so the score is
minimized relative to an arbitrary phase shift ¢ as in the following:

Y Y ()
xe{ab,cdeABCDE} i (6)
— model(x, #; + ¢))’
In addition to measuring the quality of the model output, one can assess the
plausibility of the model parameters themselves. The previous probability

of each individual parameter value p; was calculated using the probability
distributions P; obtained from the initial parameter search (see Table S2).

W = —In| [[Pi(p;) | +In| J]max(P,) )
J J
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In some of the calculations described below, this term was added to the
score function defined above.

Sp = S+yU ®)

The weighting term vy controls the relative balance between the two compo-
nents. The value chosen (0.1) was sufficient to constrain the distribution of
model parameters without severely compromising the quality of the fit
(Fig. 2).

Parameter set optimization

Parameters were optimized using a differential evolution (DE) algorithm
(28). 10* oscillating parameter sets were randomly generated from the
distributions in Table S1 and rescaled to have 24-h periods; the 256 high-
est-scoring sets were used as the starting population. DE converged on a
near-optimal parameter set; the result was further refined by simplex mini-
mization (40).

Generation of model ensembles

Once a global optimum was identified, an ensemble of nearby points could
be generated using the MMC algorithm (9). The fitted qPCR data comprised
five transcripts, sampled every four hours over a 48-h period; an error scale
was established by calculating the median absolute deviation between the
model results and these 60 data points. An MMC sampling temperature
was chosen that gave roughly the same median absolute deviation between
the optimized model and the members of the ensemble. The scoring
schemes with fewer constraints (i.e., omitting the parameter-probability
and knockout terms) were able to fit the experimental data more closely
and therefore required lower-temperature MMC sampling to generate an
ensemble with the same median error.
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FIGURE 2 Ensemble-based predictions of
mRNA levels. Parameters were chosen by mini-
mizing the total squared deviation from the data
points shown, either without (“no P”) or with
(“P”) probability constraints on parameter values.
Bold lines show the output for the optimized
parameter values; shaded areas contain 80% of
the traces from Monte Carlo ensembles. Similar
plots for the protein components can be found in
Fig. S4. To see this figure in color, go online.
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Generation of phase response curves

Phase response curves (PRCs) were generated following the method of
Kramer et al. (41). Briefly, a general set of coupled ODEs with a parameter
vector o can be written as in the following:

dy_

” ®

f(y, o, 1)

We consider a to include not only the parameters that enter explicitly into f
but also the initial conditions y(0). Using the Jacobian, we can calculate the
adjoint Green’s function matrix as in the following:

in(t/, O+ K, 0)J(7)

0
dr ’

Ki(t,t) =1, /<t
(10

Once the system has converged to the limit cycle, its state can be completely
described by specifying its phase along the limit cycle trajectory. A differ-
ential perturbation 9y, to the state variable y;, delivered at time ¢’, will lead
to a differential delay or advance 0f that can be calculated as in the
following:

ot
Ay (t')

d X
Ou(?) yglf’) (11

= lim —KG(f'1) /

In practice, this calculation requires integrating Eq. 9 (in our case, Eq. 1)
forward from a defined starting point on the limit cycle to time 7 and saving
values of J at all of the integration time points. The — o limit is satisfied
as long as the forward integration has adequately converged to the limit
cycle. J must then be interpolated (e.g., using a cubic spline) to give values
at arbitrary time points for the integration of Eq. 9 backward to time ¢’. This
backward integration only needs to be performed once; one can save the
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values of K at each integration time point and interpolate between them to
obtain Q(t’) at arbitrary times.

It is also possible (albeit less precise) to calculate PRCs by a method
resembling an experimental protocol, in which state variables or model
parameters are perturbed at a defined point during the integration and the
resulting phase shift measured. This method produces curves with different
magnitudes, but roughly the same shapes.

RESULTS
Ensemble parameter distributions

Fig. 3 shows the distribution of parameters obtained under
four different scoring conditions: both with and without
the probability constraints (“P”) and the knockout con-
straints (“KO”). For each set of conditions, 6400 parameter
sets were sampled from the MMC ensemble and the pooled
set of 25,600 parameter sets, along with the four optimized
solutions, was projected onto their first two principal com-
ponents and visualized using minimum-area convex hulls
(Fig. 3 A). The ensembles with probability constraints
occupy a smaller area than those without them, illustrating

0.5 -
A |
e 2
2 1.5 -1 0.5 0 0.5
-0.5
N
8}
a
-1
-1.5 -
-2
PC1
B
-2 1
am—no P
N
O —P
o
e===no KO, no P
e===no KO, P
PC1
FIGURE 3 (A) Parameter values were drawn from a Monte Carlo

ensemble and projected onto their first two principal coordinates. The solid
lines show a minimum-area convex hull containing 90% of points. (B) Min-
imum-area convex hulls for parameter sets sampled under four different
scoring conditions: both with and without the parameter value probability
constraints (“P” versus “no P”) and either with or without (“no KO”)
the knockout constraints. Locations of optima are shown by round dots.
The probability constraint generally results in a smaller sampling region,
and removal of the knockout constraints permits the exploration of other-
wise forbidden regions of parameter space. To see this figure in color, go
online.
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the constraints’ success in limiting access to unrealistic
parameter values. The calculation with neither probability
nor knockout constraints (“no KO, no P”) occupies a smaller
area than the version with knockout constraints only (“no
P”); this is likely because the “no KO, no P” calculation
could provide a closer fit to the experimental data and was
therefore sampled at a lower temperature. The “no KO”
sampling also ventures into regions of parameter space
that appear to be inaccessible when the knockout constraints
are present. Fig. S5 shows the degree to which knockout
constraints are violated when they are not enforced during
optimization and sampling. When the probability constraints
are present but the knockout constraints are not (“no KO, P”
in Fig. 3 B), the arrhythmic RevErb knockout phenotype is
almost never reproduced correctly. This appears to result
from specific changes in the parameter distribution.

Fig. 4 presents another perspective on parameter vari-
ability—here individual parameter values are compared
across the same four sampling schemes. Again, the two en-
sembles using the probability constraint show less variation
in parameter values than the two that omitted it.

One unanticipated effect of the probability constraint term
is that strong regulatory interactions (i.e., large x values)
were compensated by weakening other interactions, often
to the point of insignificance. The net effect was a “pruning”
of the regulatory network that identified interactions that
may not be important for the correct functioning of the
model. For example, x5 and x5, the parameters controlling
E4BP4’s interactions with Rora and Cryl, were lower than
the other x parameters. When these were set to zero (i.e.,
an E4bp4 knockout), rhythmicity was nearly always re-
tained. This suggests that E4bp4 may function primarily as
a circadian output gene, rather than as a member of the
core clock network. Similar effects are observed for xo
and x 0, the parameters controlling the regulation of E4bp4.

Similar pruning effects allow us to clearly see the effects
of knockout constraints. The clearest effect of the knockout
constraint (i.e., the difference between “P” and “no KO, P”)
is in the values of x4 and ¥, the parameters that control regu-
lation of Cryl by DBP (via the D-box) and REV-ERBa (via
the RRE), both of which are repressed by CRY 1 via the E/E’-
box. Fig. S5 suggests that the major difference between these
two ensembles is that the knockout-unconstrained ensemble
fails to reproduce the RevErb knockout phenotype. In other
words, a correct RevErb knockout phenotype is correlated
with the regulation of Cryl by E/E’-box-controlled genes.
If other clock genes with as-yet-uncharacterized knockout
phenotypes (such as Rora or E4bp4) are shown to be essen-
tial, a similar approach will allow us to identify the regula-
tory interactions underlying their essentiality.

Experimental predictions

Ensemble-based parameterization allows us to quantify un-
certainty in our predictions of experimental results. Because
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FIGURE 4 Parameter distributions for the four different scoring scenarios; data series are named as in Fig. 3. The probability constraint term suppresses
overly fast mRNA turnover and keeps activation constants confined within a narrow range but has little effect on protein degradation rates or the Hill

coefficient. To see this figure in color, go online.

the model was parameterized with system-level data, it will
be most useful to make a prediction of system-level
behavior, determining how the clock as a complete system
will respond to a perturbation.

PRCs are used in chronobiology to describe the effect of
external signals (light, chemicals, etc.) on the phase of the
clock (42). A PRC is obtained by plotting the phase shift
as a function of the preperturbation phase. For example, un-
der constant-dark conditions, an early-morning light pulse
will shift the clock to an earlier time (dawn is perceived to
have come early), whereas an evening pulse produces a pos-
itive phase shift (dusk is perceived to have come late). Un-
der constant-light conditions, a dark-pulse PRC can also be
constructed by briefly turning the lights off at defined times.

Although our model does not explicitly incorporate the
effects of external stimuli, phase-response curves can be
calculated for differential perturbations to the state vari-
ables. In cultured SCN slices, phase shifts have been
observed as a result of chemical stimulation (43-46), but
the connection between the signal-response cascades and
the core clockwork is unclear, especially for the dark-pulse
response. For example, external stimulation could lead to
transcription activation, targeted protein degradation, or
other downstream effects. If the phase response of state var-
iable perturbations is similar to that of experimental pertur-
bations, one can begin to search for a causal link between
external perturbations and internal changes.
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Fig. 5 shows the PRCs calculated for perturbations to the
five mRNA components of the model (see Fig. S6 for protein
components). The PRCs calculated for the parameterizations
with and without the probability constraints have similar
shapes, but sometimes wildly different magnitudes. The
shape of the PRC curves can be compared with “light-
type” PRCs such as N-Methyl-D-aspartate (NMDA) (47)
or “dark-type” PRCs such as NPY (48). Such comparisons
should be made cautiously, however; the experimental data
come from organotypic slice cultures in the case of NMDA
or intact mice in the case of NPY and may reflect higher-
level effects that are not observed in the single-cell clock.

The PRCs for Dbp and RevErba show some similarities
to NMDA. Light stimulation has been known to promote
Perl/2 transcription (49-51); all four of these genes have
expression schedules that are controlled by an E/E’-box.
Stronger similarities can be seen between the dark-type
PRC for NPY and the calculated PRC for Cryl. The mech-
anism by which NPY affects the core clockwork is still un-
clear; Cryl may be a fruitful target for future investigation.

The NMDA data of Asai et al. (47) used cultured SCN sli-
ces for which circadian time is more difficult to interpret than
in an intact rodent. They defined CTO as the luminescence
peak of luciferase driven by a Perl promoter. When SCN tis-
sues are synchronized to an external zeitgeber, the lumines-
cence peak coincides with the middle of the light period (52).
All of our experimental protein/mRNA phases (as well as the
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NPY PRC) were drawn from intact rodents subjected to a
light period lasting from CTO-12. The luminescence peak
should be at roughly CT6; the data points in Fig. 5 are shifted
by 6 h relative to the presentation in Asai et al.

The PRC for E4bp4 is more enigmatic. In the probability-
constrained calculation, perturbations to E4bp4 levels have
virtually no effect on the phase. When the model is opti-
mized without probability constraints, the effects of pertur-
bations to E4bp4 levels are huge. As was mentioned above,
Fig. 4 suggests that E4bp4 may be a circadian output, rather
than an integral part of the core feedback loops. In this case,
we would expect direct perturbations to have no effect on
the core clockwork.

The PRC shapes can be interpreted using Fig. 2, which
shows mRNA concentrations as a function of circadian
time. The expression level of Cryl peaks around lights-off
(CT12) and has a minimum near lights-on (CTO); the
extrema for CRY1 protein will be about 2 h later. If Cry!
levels are increased during the daytime, when its levels
are rising, the clock will speed up as shown by the positive
daytime amplitude in Fig. 5. Conversely, an increase in Cryl
during the night will prolong its decline and slow down the
clock, consistent with the negative nighttime amplitude. In
general, PRCs cross the x axis in the negative direction
near the abundance peak, and they cross in the positive di-
rection near the abundance minimum.
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A related test of our model’s predictive power is sug-
gested by the rescue of Cryl ™' ~:Cry2~'~ knockout cells us-
ing exogenous Cryl driven by a synthetic promoter (18).
When the phase of Cryl expression was altered by using
synthetic promoters with varying numbers of D-box and
RRE elements, it was found that weakening of the D-box
regulation correlates with a later peak of CRY1 expression
(relative to the period) and an overall lengthening of the
circadian period. We can mimic this effect by rescaling x4
and x7, which control the binding of DBP and E4BP4 to
the promoter region of Cryl. For the optimized parameter
set, a decrease in these two binding constants led to a dimin-
ished role for the D-box in the regulation of Cry/, leading in
turn to a phase delay of CRY1 expression and an increase in
the oscillation period (Fig. 6), consistent with the experi-
mental trend.

When eight parameter sets were randomly chosen from
the MMC ensemble, seven show the expected positive
trend. Period/phase curves were calculated for modified
versions of 6400 MC-sampled parameter sets. The result-
ing distribution of points is mostly in the positive quadrant
(lengthened period and delayed CRY1 phase), suggesting
an overall trend that agrees qualitatively with experiments.
It may be possible to generalize: systems-level outputs
become less consistent as they are less similar to the type
of behavior used to parameterize the model. Our score
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FIGURE 6 Effects of weakening the D-box regulation of Cryl The x axis
indicates the increase in period length (beyond the original ~24 h), and the y
axis shows the increase in the CRY1 phase (from the original CT 14),
normalized to circadian time. For the parameter set optimized with proba-
bility constraints, weaker D-box regulation results in a longer oscillation
period and a later CRY1 peak (relative to the period length). When eight
random samples were drawn from a Monte Carlo ensemble, the same pos-
itive trend was observed in seven of them. Shaded regions show convex
hulls containing the period/delay curves for parameters drawn from the
MC ensemble; the outermost hull contains 90% of points. To see this figure
in color, go online.

function largely measured the shape of the limit cycle. The
abundance oscillations shown in Fig. 2 show behavior on
the limit cycle and are quite consistent. PRCs (Fig. 5)
show the effects of small perturbations from the limit cycle
and are still fairly consistent. The Cryl/2 rescue experi-
ments perturb the system significantly from the wild-type
limit cycle, and only qualitative predictions can be made
with any confidence.

Cleaning up sloppy models

Model sloppiness poses a challenge for systems biology—if
a model is parameterized to systems-level data, estimates
for the values of individual parameters are often unreliable.
Because the physical environment of the cell differs from
the dilute solutions used in most in vitro assays, experi-
mental estimates of parameter values will often be of limited
utility. Furthermore, whereas the “sloppy” eigendirections
are severely underconstrained by systems-level data, the
“stiff” eigendirections are often more tightly constrained
than they would be by direct experimental measurement
(3). A model built with directly measured parameters will

TABLE 2 Effects of modeled knockout mutations
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often be less able to reproduce systems-level data than a
sloppy model parameterized at the systems level.

This is not to say that individual parameter values are irrel-
evant to systems-level predictions. For example, because con-
centration scales are arbitrary in our dimensionless model,
mRNA or protein degradation rates can increase significantly,
as long as they are offset by increases in the x parameters that
control the protein’s ability to regulate other genes. Phase
response calculations, however, require taking a derivative
of the phase with respect to a perturbation to a concentration
variable—the absolute value of these dimensionless variables
determines the scale of the PRC. The extreme variability of
the x parameters related to E4bp4 (x3 and y; as inputs, X9
and x;o as inputs; see Fig. 4) is therefore reflected in the
wildly differing scales of E4bp4 PRCs in Fig. 5.

Our solution to this problem is facilitated by recent
genome-scale surveys of the synthesis and degradation rates
of proteins and mRNAs. Even if the components of a model
cannot be identified with any of the measured species, large
data sets can be used to construct previous probability distri-
butions for model parameters. Fig. 2 indicates that the pres-
ence of probability constraints results in only minor changes
to the model outputs, whereas Figs. 3 and 4 show dramatic
decreases in parameter variability.

Knockout predictions

Our simplified model eliminates much of the redundancy of
the real clock system and is less resilient to gene knockouts
than the actual system. Knockouts of Cryl/2 are arrhythmic
because of the network topology (29); if C is removed from
the diagram in Fig. 1 C, no closed negative feedback loops
persist. The Rev-Erba knockout is required to be arrhythmic
by our scoring scheme (15), although many parameter sets
showed damped oscillations to a stable fixed point. Other
possible knockouts have not been as well-characterized
experimentally and are discussed below and in Table 2.

Dbp/Tef/HIf

If these D-box activators are knocked out, Rora also will not
be synthesized; because A and B are activators required for
the transcription of Cryl, this precludes oscillations. The
concentrations of Rora/B, Cryl, and E4bp4 should decrease
dramatically. If this mutation does not affect these levels at
all (particularly Rora/B, which contain D-boxes), then the

Experimental

Mutant Predicted rhythmicity Predicted expression changes observation  Reference(s)
DbplTefiHIf Arrhythmic due to model topology Ror, Cryl, E4bp4 all decrease dramatically Rhythmic 27)
RoralB Damped oscillations E4bp4 decreases Rhythmic? (54,55)
Cryl/2 Arrhythmic due to model topology DbplTeflHIf, Ror, RevErb, E4bp4 all increase Arrhythmic (29)
RevErbalf Arrhythmic due to constraint; sometimes shows Dbpl/TeflHIf decreases; others do not change much Arrhythmic (15)

damped oscillations
E4bp4 Rhythmic No effect

Biophysical Journal 107(6) 1462-1473
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system may contain an additional D-box activator (either
oscillatory or constitutive) that is compensating for the
loss of Dbp/Tef/HIf. If instead, Rora/( levels do decrease
and the phenotype is similar to the removal of D-box regu-
lation from Cryl (Fig. 6) with a later Cryl phase and a
longer period, this suggests that D-box mediated expression
is affected but RRE-mediated expression is not. In such a
case, it is possible that the RRE is being activated by a
pathway other than the D-box-mediated ROR proteins.

Rora./8

Knocking out the Ror genes does not abolish Cryl (which is
also activated by DBP/TEF/HLF), but it does abolish
E4bp4. The remaining three genes do not form any closed
feedback loops, so sustained oscillations are impossible.
Members of the MMC ensemble with probability and
knockout constraints generally show damped oscillations;
in ~ 30% of cases this damping is fairly slow (i.e., more
than a few oscillation periods are observed) and popula-
tion-level oscillations may still be possible, similar to
Perl and Cryl single-knockout mutants (53). Levels of
E4bp4 decrease dramatically, but changes to Cryl are
smaller. This is probably because the Ror genes have inco-
herent effects on Cryl, both activating it directly and repres-
sing it indirectly via E4bp4. If arrhythmicity and a decrease
in E4bp4 are not observed, then RRE expression may be
activated by a different pathway. Experimentally, the Roro
knockout shows a shortened circadian period (54), whereas
the Ror@ knockout shows a lengthened one (55); the double-
knockout has (to our knowledge) not yet been characterized.

E4bp4

When parameter sets are drawn from the MMC ensemble
with probability and knockout constraints, simulated knock-
outs of E4bp4 have no effect on the period, the fit quality, or
the correctness of other knockout phenotypes (RevErbo,
CrylAD, CrylARRE). This is consistent with our interpre-
tation of Figs. 4 and 5—FE4bp4 may function primarily as an
output gene, rather than a core component of the clock.

DISCUSSION
A new view of the mammalian clock

Models that focus on the central Per-Cry/Bmall-Clock
feedback loop have been successful at reproducing several
aspects of the circadian clock, such as gene knockout pheno-
types (10,12—14) and entrainment to light stimuli (10,11).
The recent finding that Cry! is best regarded as being co-
regulated by the RRE and the D-box (rather than the E/E’-
box) will require a different topological organization for
future models. Although our model is less detailed than
many in the literature, it more correctly describes the tran-
scriptional regulation of Cryl (18). Our decision not to
include Perl and Per2 in the model was motivated primarily
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by the current incomplete state of knowledge about the
detailed biochemical mechanisms of these two important
components, in particular the unusually long delay between
their mRNA and protein expression peaks (22,35,36). As
more reliable experimental characterizations of these genes
and their products become available, it will be possible to
incorporate them into our modeling framework.

Our results suggest that the current understanding of the
D-box and its role is far from complete. When the model
is optimized with parameter constraints, the parameters gov-
erning the effects of E4BP4 (a D-box repressor) on Cryl and
Rora take on extremely low values (Fig. 4), suggesting that
the observed expression patterns for these genes can be fit
without any significant help from E4bp4. The inconsistent,
extremely low-amplitude PRC for E4bp4 (Fig. 5) likewise
indicates that E4bp4 may function primarily as a circadian
output, rather than as a central part of the clockwork.

At the same time, experiments show that (at least in
cultured cells) D-box regulation is essential for the correct
timing of Cryl expression (18). It is possible that the effects
of the D-box on the core clockwork are mediated solely by
the D-box activators Dbp/Tef/HIf or that the essentiality of
E4bp4 depends on interactions that were not included in
our model. In any case, careful experimental studies of D-
box-binding transcription factors and their targets are likely
to yield valuable insights into clock function.

Experimental perturbations

PRCs are determined experimentally by perturbing the
clock system using a stimulus—Ilight, neurotransmitters,
etc.—that has an indirect effect on the core clock system,
mediated by signaling pathways. A more direct (and
possibly feasible) approach would be transient overexpres-
sion of a clock gene in cultured cells. Simple genetic circuits
such as an incoherent feed-forward loop can generate tran-
sient pulses of gene expression in response to an external
signal (56,57). If an exogenous clock gene driven by this
type of circuit were transfected into a cell line containing
a bioluminescent circadian reporter, one could observe the
effects of an overexpression pulse on the clock’s phase.
This type of protocol avoids the problems of redundancy.
For example, our model gene b (a D-box driven activator
of the RRE) could correspond to Rora or Ror(3, and other
redundant genes may yet be discovered. Overexpression
of a single redundant gene, however, may be sufficient to
produce the expected phase shift. This contrasts with
knockout experiments in which all redundant versions of a
gene must be removed before an effect is observed.

Mechanism of chemically induced
phase resetting

Previous models of the mammalian clock have focused on
the light-stimulated induction of Perl/2 transcription as

Biophysical Journal 107(6) 1462-1473
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the sole external input to the clock (10,11,58,59). Although
this is undoubtedly important, it is likely that other pathways
exist, particularly for nonphotic signals such as NPY.
Because it focuses on a different feedback loop structure
than what has traditionally been employed in clock models,
our model provides an ideal tool with which to search for
other possible modes of perturbation.

Comparison of our calculated PRCs with experimentally
derived PRCs (Fig. 5), suggests that photic signals such as
NMDA may act by stimulating the synthesis of E/E’-box
controlled genes such as Dbp or RevErba, consistent with
the light stimulation of E/E’-box-regulated Per. In addition,
nonphotic signals such as NPY may act on the core clock-
work by increasing the expression of Cryl.
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